
Trust Model for Security 1

Automation Data 1.0 (TMSAD) 2

(DRAFT) 3

Harold Booth 4

Adam Halbardier 5

 6

NIST Interagency Report 7802

(DRAFT)

 7

8 NIST Interagency Report 7802

(DRAFT)

Trust Model for Security Automation Data
1.0 (TMSAD) (DRAFT)

Harold Booth

Adam Halbardier

C O M P U T E R S E C U R I T Y

Computer Security Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-8930

July 2011

U.S. Department of Commerce

Gary Locke, Secretary

National Institute of Standards and Technology

Dr. Patrick D. Gallagher, Director

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 iii

 9

Reports on Computer Systems Technology 10

 11

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 12

(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s 13

measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of 14

concept implementations, and technical analysis to advance the development and productive use of 15

information technology. ITL’s responsibilities include the development of technical, physical, 16

administrative, and management standards and guidelines for the cost-effective security and privacy of 17

sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s 18

research, guidance, and outreach efforts in computer security and its collaborative activities with industry, 19

government, and academic organizations. 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

33

Certain commercial entities, equipment, or materials may be identified in this

document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the

entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report 7802 (DRAFT)

25 pages (July 2011)

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 iv

Acknowledgments 34

The authors wish to thank their colleagues who reviewed drafts of this document and contributed to its 35

technical content. 36

Abstract 37

This report defines the Trust Model for Security Automation Data 1.0 (TMSAD), which permits users to 38

establish integrity, authentication, and traceability for security automation data. Since security automation 39

data is primarily stored and exchanged using Extensible Markup Language (XML) documents, the focus 40

of the trust model is on the processing of XML documents. The trust model is composed of 41

recommendations on how to use existing specifications to represent signatures, hashes, key information, 42

and identity information in the context of an XML document within the security automation domain. 43

Audience 44

The primary audiences for the TMSAD specification are developers of security automation specifications, 45

IT products that could leverage TMSAD’s capabilities, and organizations that could take advantage of 46

TMSAD to establish integrity, authentication, and traceability of their security automation data. NIST 47

welcomes feedback on improving the TMSAD specification. 48

Trademark Information 49

All names are registered trademarks or trademarks of their respective companies. 50

51

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 v

Table of Contents 52

1. Introduction .. 1 53

1.1 Purpose and Scope ... 1 54

1.2 Document Structure .. 1 55

1.3 Document Conventions ... 2 56

2. Abbreviations ... 3 57

3. Relationship to Existing Specifications and Standards .. 4 58

4. Conformance .. 5 59

4.1 Product Conformance.. 5 60

4.2 Content Conformance ... 5 61

5. Algorithms and Parameters ... 6 62

5.1 RSA-SHA256 .. 6 63

5.2 ECDSA-SHA256 ... 6 64

5.3 Digest Algorithms .. 7 65

5.3.1 SHA-256 ... 7 66

5.3.2 SHA-384 ... 7 67

5.3.3 SHA-512 ... 7 68

6. Model Overview .. 8 69

6.1 Signature Types .. 8 70

6.1.1 Detached... 9 71

6.1.2 Enveloped ... 9 72

6.1.3 Enveloping ...10 73

6.2 XML Signature Syntax Overview ... 10 74

6.2.1 SignedInfo ..11 75

6.2.2 KeyInfo ...12 76

6.2.3 Object ..12 77

6.2.4 References ...13 78

6.3 Conventions .. 14 79

6.3.1 Canonicalization ...14 80

6.3.2 Countersigning ...14 81

6.3.3 Id Values ..14 82

7. Processing Requirements ..15 83

7.1 Signature Identifiers .. 15 84

7.2 Signature Verification .. 15 85

7.3 Manifest References ... 15 86

7.4 KeyInfo .. 15 87

7.5 Countersigning .. 15 88

 89

List of Appendices 90

Appendix A— Example Usage ...16 91

Appendix B— References ...17 92

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 vi

B.1 Normative References ... 17 93

B.2 Informative References ... 17 94

Appendix C— Change Log ...19 95

 96

List of Figures and Tables 97

Table 1 – Conventional XML Mappings .. 2 98

Figure 1 – High-Level Signature Diagram .. 8 99

Figure 2 – Detached Signature in a Separate Document ... 9 100

Figure 3 – Detached Signature in the Same Document .. 9 101

Figure 4 – Enveloped Signature ... 9 102

Figure 5 – Enveloping Signature ...10 103

Figure 6 – XML Signature Syntax Element Hierarchy ...11 104

Table 2 – dt:signature-info ..13 105

 106

 107

 108

file:///C:/Users/karen/Desktop/NIST%20Files/Dig%20Trust/IR%20Digital%20Trust%2020110711-DRAFT-kas.docx%23_Toc298158156
file:///C:/Users/karen/Desktop/NIST%20Files/Dig%20Trust/IR%20Digital%20Trust%2020110711-DRAFT-kas.docx%23_Toc298158157
file:///C:/Users/karen/Desktop/NIST%20Files/Dig%20Trust/IR%20Digital%20Trust%2020110711-DRAFT-kas.docx%23_Toc298158158
file:///C:/Users/karen/Desktop/NIST%20Files/Dig%20Trust/IR%20Digital%20Trust%2020110711-DRAFT-kas.docx%23_Toc298158159
file:///C:/Users/karen/Desktop/NIST%20Files/Dig%20Trust/IR%20Digital%20Trust%2020110711-DRAFT-kas.docx%23_Toc298158160
file:///C:/Users/karen/Desktop/NIST%20Files/Dig%20Trust/IR%20Digital%20Trust%2020110711-DRAFT-kas.docx%23_Toc298158161

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 1

1. Introduction 109

A trust model is a necessary component for handling security automation data to permit users to establish 110

integrity, authentication, and traceability for the data. The trust model can be leveraged to determine 111

authorization—that a requestor of a particular piece of information is permitted access to that information, 112

or that a particular piece of content is permitted to be processed. A trust model may also be used to 113

implement traceability of results, giving increased assurance that a set of results are from a particular 114

source. Finally, a trust model will allow for content integrity to be affirmed, assuring that content has not 115

been modified since it was produced, whether by human or machine. 116

1.1 Purpose and Scope 117

This document provides guidelines and recommendations for how a common trust model, called the Trust 118

Model for Security Automation Data (TMSAD), can be applied to specifications within the security 119

automation domain, such as Security Content Automation Protocol (SCAP). Since information in the 120

security automation domain is primarily exchanged using Extensible Markup Language (XML), the focus 121

of this model is on the processing of XML documents [XML]. The trust model is composed of 122

recommendations on how to use existing specifications to represent signatures, hashes, key information, 123

and identity information in the context of an XML document within the security automation domain. 124

This document makes extensive use of the W3C recommendation XML Signature Syntax and Processing 125

[XMLDSIG], referencing the features and syntax of [XMLDSIG]. The requirements of those features are 126

described in the W3C recommendation and are not repeated in this document. It is expected that readers 127

of this document will already be familiar with the details of [XMLDSIG]. 128

Detailing a method for managing and exchanging public keys is out of scope for this document. This 129

document provides information on how X.509 certificates or public keys may be represented within the 130

model; however, this document defers to the content consumer for establishing a trust relationship to a 131

particular identity or key. 132

1.2 Document Structure 133

This report is organized into the following major sections: 134

 Section 2 defines selected terms and abbreviations used in this specification. 135

 Section 3 provides an overview of related specifications and standards. 136

 Section 4 defines the high-level conformance rules for this specification. 137

 Section 5 defines the cryptographic algorithms and parameters to those algorithms that may be 138

used for hashing and signing. 139

 Section 6 provides a brief overview of the XML Signature Syntax and Processing specification; it 140

defines how that specification will be used and what additional requirements security automation 141

will impose. 142

 Section 7 describes processing requirements for the trust model. 143

 Appendix A provides some examples of usage of the defined trust model. 144

 Appendix B lists normative and informative references. 145

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 2

 Appendix C provides a change log that documents significant changes to major drafts of the 146

specification. 147

1.3 Document Conventions 148

The key words ―MUST‖, ―MUST NOT‖, ―REQUIRED‖, ―SHALL‖, ―SHALL NOT‖, ―SHOULD‖, 149

―SHOULD NOT‖, ―RECOMMENDED‖, ―MAY‖, and ―OPTIONAL‖ in this document are to be 150

interpreted as described in [RFC2119]. 151

Text intended to represent computing system input, output, or algorithmic processing is presented in 152

fixed-width Courier font. 153

Table 1 shows the conventional XML mappings used in this document. 154

Table 1 – Conventional XML Mappings 155

Prefix Namespace Schema

dc http://purl.org/dc/elements/1.1/ Simple Dublin Core elements

dsig http://www.w3.org/2000/09/xmldsig# Interoperable XML digital signatures

dt http://scap.nist.gov/schema/xml-dsig/1.0 Trust Model for Security Automation Data
extensions

xs http://www.w3.org/2001/XMLSchema XML Schema schema document

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 3

2. Abbreviations 156

This section defines selected abbreviations, including acronyms, used within the document. 157

DSS – Digital Signature Standard 158

ECDSA – Elliptic Curve Digital Signature Algorithm 159

FIPS – Federal Information Processing Standards 160

IR – Interagency Report 161

RFC – Request for Comments 162

SCAP – Security Content Automation Protocol 163

SHA – Secure Hash Algorithm 164

SP – Special Publication 165

TMSAD – Trust Model for Security Automation Data 166

URI – Uniform Resource Identifier 167

W3C – World Wide Web Consortium 168

XML – Extensible Markup Language 169

XSLT – Extensible Stylesheet Language Transformation 170

 171

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 4

3. Relationship to Existing Specifications and Standards 172

This document makes use of existing specifications such as XML Signature Syntax and Processing 173

[XMLDSIG] to establish a trust model. This document further specifies and constrains usage of 174

[XMLDSIG] and other W3C recommendations to satisfy requirements exposed within the security 175

automation domain. 176

Although XML Signature Syntax and Processing Version 1.1 [XMLDSIG-11] is not a W3C 177

recommendation as of mid-2011, this document adds requirements for selected cryptographic algorithms 178

consistent with the requirements currently included in [XMLDSIG-11]. 179

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 5

4. Conformance 180

Products and organizations may want to claim conformance with this specification for a variety of 181

reasons. For example, a software vendor may want to assert that its product uses the trust model properly 182

and can interoperate with any other product using the trust model. Another example is a policy mandating 183

that an organization use the trust model for establishing suitability of content for use, or establishing 184

provenance of content. 185

This section provides the high-level requirements that a product or document containing signature 186

information MUST meet for conformance with this specification. Most of the requirements listed in this 187

section reference other sections in the document that fully define the requirements. 188

Other specifications that use the trust model defined within this document MAY define additional 189

requirements and recommendations. In addition, other specifications or standards MAY define additional 190

requirements on the correct implementation of the cryptographic algorithms in specific environments or 191

situations. Such requirements and recommendations are outside the scope of this publication. 192

4.1 Product Conformance 193

There are two types of products that may be conformant with the trust model: content authors and content 194

consumers. Content authors are products that generate content that uses the trust model, while content 195

consumers are products that process content that leverages the trust model. All products claiming 196

conformance with this specification MUST comply with the following requirements: 197

1. Content consumers MUST consume and correctly process well-formed trust model documents as 198

defined in Section 6. This includes following all of the processes defined in Section 7. 199

2. Content authors MUST ensure that all trust model documents they produce are well-formed. This 200

includes following all of the processes defined in Section 7, and adhering to the syntax, structural, and 201

other trust model document development requirements defined in Section 6. 202

3. All products MUST support the algorithms and parameters identified in Section 5. 203

4. Make an explicit claim of conformance to this specification in documentation provided to end users. 204

4.2 Content Conformance 205

Organizations creating or maintaining documents that claim conformance with this specification SHALL 206

adhere to the syntax, structural, and other trust model document development requirements defined in 207

Section 6. 208

In addition there are recommendations in Section 5 that organizations SHOULD consider when creating 209

or maintaining trust model documents. 210

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 6

5. Algorithms and Parameters 211

Since [XMLDSIG] does not require support for all of the signature and hash algorithms needed for the 212

trust model, this section adds requirements for supporting the RSA Algorithm signature method with 213

SHA-256 algorithm and the ECDSAwithSHA256 signature algorithm. This section adds these selected 214

algorithms into the trust model consistent with both RFC 4051 [RFC4051] and the currently under 215

development [XMLDSIG-11]. The RSA algorithm refers to the RSASSA-PKCS1-v1_5 algorithm 216

described in section 8.2 of RFC 3447 [PKCS1]. 217

Other algorithms not otherwise required by [XMLDSIG] or this section MAY OPTIONALLY be used by 218

content authors and supported by content consumers, but only the algorithms and parameters required by 219

[XMLDSIG] and this section are assured to be interoperable across all implementations. If an algorithm 220

identifier has been specified in [RFC4051], the identifier specified within [RFC4051] SHOULD be used. 221

Section 7 includes additional processing requirements for content consumers. 222

NIST Federal Information Processing Standards (FIPS) 186-3, Digital Signature Standard (DSS) 223

[FIPS186-3] and NIST Special Publication (SP) 800-57, Recommendation for Key Management – Part 1: 224

General [SP800-57] provide additional information relating to security considerations in key size choice 225

for various algorithms. 226

5.1 RSA-SHA256 227

The RSA Algorithm signature method with SHA-256 algorithm MUST be supported. Consistent with 228

section 2.3.2 of [RFC4051] and section 6.4.2 of [XMLDSIG-11], the RSA Algorithm signature method 229

with SHA-256 algorithm MUST be identified using the following algorithm identifier: 230

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 231

The <dsig:SignatureValue> content for this identifier MUST be the base64 encoding, as 232

described in RFC 2045 [RFC2045], of the octet string, S, specified in section 8.2.1 of RFC 3447 233

[PKCS1]. Signature computation and verification does not require implementation of an ASN.1 parser. 234

For the RSA Algorithm, content consumers MUST support 2048-bit keys and SHOULD support 3072-bit 235

keys. Content authors SHOULD use a key size of either 2048 or 3072 bits. 236

5.2 ECDSA-SHA256 237

The ECDSAwithSHA256 signature algorithm MUST be supported, which is ECDSA [FIPS186-3] over 238

the P-256 prime curve specified in Appendix D of [FIPS186-3] and using the SHA-256 algorithm. 239

Consistent with section 2.3.6 of [RFC4051] and section 6.4.3 of [XMLDSIG-11], the 240

ECDSAwithSHA256 MUST be identified using the following algorithm identifier: 241

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256 242

The ECDSA algorithm signature is a pair of integers referred to as (r, s). The 243

<dsig:SignatureValue> consists of the base64 [RFC2045] encoding of the concatenation of two 244

octet-streams that respectively result from the octet-encoding of the values r and s, in that order. Integer to 245

octet-stream conversion MUST be done according to the I2OSP operation defined in Section 4.1 of RFC 246

3447 [PKCS1] with the xLen parameter equal to the size of the base point order of the curve in bytes (32 247

for the P-256 curve). 248

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 7

5.3 Digest Algorithms 249

While content consumers are still REQUIRED to support the SHA-1 Digest algorithm as defined in 250

section 6.2.1 of [XMLDSIG], content authors SHOULD NOT use the SHA-1 Digest algorithm. Content 251

authors SHOULD instead use one of the algorithms defined within this section. The identifiers used 252

below are consistent with either [RFC4051] or the identifiers used in XML Encryption Syntax and 253

Processing [XMLENC], and with the current work occurring on [XMLDSIG-11]. The SHA-256 Digest 254

algorithm MUST be supported by conforming implementations. SHA-384 and SHA-512 are OPTIONAL 255

to support. 256

5.3.1 SHA-256 257

The SHA-256 algorithm [FIPS180-3] MUST be identified using the following algorithm identifier: 258

http://www.w3.org/2001/04/xmlenc#sha256 259

The SHA-256 algorithm produces a 256-bit digest string. The content of the <dsig:DigestValue> 260

MUST be the base64 [RFC2045] encoding of the digest string viewed as a 32-octet octet stream. 261

5.3.2 SHA-384 262

The SHA-384 algorithm [FIPS180-3] MUST be identified using the following algorithm identifier: 263

http://www.w3.org/2001/04/xmldsig-more#sha384 264

The SHA-384 algorithm produces a 384-bit digest string. The content of the <dsig:DigestValue> 265

MUST be the base64 [RFC2045] encoding of the digest string viewed as a 48-octet octet stream. 266

5.3.3 SHA-512 267

The SHA-512 algorithm [FIPS180-3] MUST be identified using the following algorithm identifier: 268

http://www.w3.org/2001/04/xmlenc#sha512 269

The SHA-512 algorithm produces a 512-bit digest string. The content of the <dsig:DigestValue> 270

MUST be the base64 [RFC2045] encoding of the digest string viewed as a 64-octet octet stream. 271

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 8

6. Model Overview 272

The syntax and processing of the trust model is based on the [XMLDSIG] W3C Recommendation, and 273

content authors and consumers MUST follow the conformance requirements found in [XMLDSIG]. This 274

section provides a high-level overview and gives recommendations on how [XMLDSIG] can be used to 275

establish a mechanism where signature information can be provided for the XML documents used within 276

the security automation domain. 277

Figure 1 shows an informative, high-level composition of a signature. Not all signatures will contain all 278

elements, and some signatures could contain additional elements. Content authors can create the signature 279

block based on the documents necessary for their use case. Content consumers can validate the signature 280

block prior to processing the signed content. 281

6.1 Signature Types 282

As defined by [XMLDSIG], there are three main ways that a signature can relate to a given reference, and 283

it is possible that the same signature will contain references with different signature relationships. The 284

three possible signature relationships are: 285

 Detached - the signature is over content external to the signature itself 286

 Enveloped - the signature is embedded within the content that is signed 287

 Enveloping - the signature contains the content that is signed 288

The following subsections provide more information on selecting the appropriate style of signature. 289

Signature Block

reference - document reference - manifest

reference - signature properties

manifest

reference - external1 reference - external2

reference - external3

signature properties

Figure 1 – High-Level Signature Diagram

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 9

6.1.1 Detached 290

 291

A detached signature typically occurs when the signature and signed content are separate. Figure 2 292

represents the case when the signed content and the signature are in two separate documents. Figure 3 293

represents a detached signature where the signed content and signature are in the same document but are 294

sibling nodes (or a child node of a sibling). Note that in Figure 3 the ―Signature‖ can occur either before 295

or after the ―Signed Content‖. The consequence of a detached signature is that the content being signed 296

may be managed independently, and it is not necessary for the content being signed to provide an element 297

for containing the signature. It is necessary that another file containing the signature, or a file format 298

capable of containing the signature and the signed content must be created or used. ―Detached‖ is most 299

commonly useful when a collection of documents must be signed with a single signature, or if a 300

document must be signed but a signature element has not been provided. 301

6.1.2 Enveloped 302

Document1 Document2

Signed Content Signature

Figure 2 – Detached Signature in a Separate Document

Document

Signed Content

Signature

Figure 3 – Detached Signature in the Same Document

Document

Signed Content

Signature

Figure 4 – Enveloped Signature

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 10

Figure 4 shows how an enveloped signature relates to the signed content. The signed content has an 303

element that contains the signature. A named transform is used to exclude the signature element during 304

signature validation. In contrast to the detached signature, when the signature is enveloped in the content 305

being signed, a specific version of the signature specification must be referenced by the content being 306

signed. Additionally, whenever content is signed, the signature will always be available with the content, 307

unlike with a detached signature where the signature may be located separately. Enveloped is most 308

commonly useful when a single standalone document must be signed independent of any other 309

documents. 310

6.1.3 Enveloping 311

Figure 5 shows how an enveloping signature relates to the signed content. The signed content is contained 312

as a child of the <dsig:Object> node within the signature. To process the signed content, the 313

signature syntax will also need to be processed. If the same content is unsigned, it will have a different 314

format from the signed version of the content. As with enveloped, the signature will always be available 315

with the content if it has been signed. Most commonly, enveloping is useful for when the content is 316

another signature that must signed. Manifest and signature properties also have an enveloping relationship 317

to the signature which includes these elements. 318

6.2 XML Signature Syntax Overview 319

All signature content MUST conform to the [XMLDSIG] specification and validate against the schema 320

found at http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd. Section 321

2.0 of [XMLDSIG] has a figure showing an informal representation of the syntax. Figure 6 is a modified 322

version of that figure to show additional areas of interest. The additional highlighted items are the 323

<dsig:KeyValue>, <dsig:X509Data>, <dsig:Manifest>, and 324

<dsig:SignatureProperties> elements. The <dsig:KeyValue> and <dsig:X509Data> 325

elements are ways to obtain the public key that can be used to validate the signature. In Figure 6 the "?", 326

"+", and "*" characters represent the number of times the preceding element or attribute is to be used. "?" 327

represents once or not at all, "+" represents one or more times, and "*" represents zero or more times. 328

Document

Signature

Signed Content

Figure 5 – Enveloping Signature

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 11

The <dsig:Manifest> element is used to provide additional references which compose the content. 329

The <dsig:SignatureProperties> element is used to provide metadata about the signature. An 330

additional use would be for the inclusion of timestamp information according to the recommendations in 331

NIST SP 800-102, Recommendation for Digital Signature Timeliness [SP800-102]. 332

Once a signature has been created, the signature and the content referred to by <dsig:Reference> 333

elements cannot be reformatted, except as is permissible by the XML Canonicalization transform that has 334

been applied [XML-C14N, XML-C14N11, and XML-exc-C14N]. The possible scope of reformatting is 335

very limited and content consumers SHOULD maintain the format of received content. 336

6.2.1 SignedInfo 337

<dsig:SignedInfo> includes the canonicalization method for the signature block itself, the signature 338

method, and references to the content that is part of what is signed. Any element outside of the 339

<dsig:SignedInfo> element that is not referenced is not included as part of the signature validation. 340

According to [XMLDSIG] a <dsig:SignedInfo> element MUST include at least one 341

<dsig:Reference>. If only one <dsig:Reference> is provided, it SHOULD be to the content 342

<Signature ID?>

 <SignedInfo>

 <CanonicalizationMethod/>

 <SignatureMethod/>

 <Reference URI? >

 <Transforms/>?

 <DigestMethod/>

 <DigestValue/>

 </Reference>)+

 </SignedInfo>

 <SignatureValue/>

 <KeyInfo>

 <KeyValue/>?

 <X509Data/>?

 </KeyInfo>

 <Object ID>

 <Manifest>

 <Reference URI? >

 <Transforms/>?

 <DigestMethod/>

 <DigestValue/>

 </Reference>)+

 </Manifest>

 </Object>?

 <Object ID>

 <SignatureProperties>

 <SignatureProperty/>+

 </SignatureProperties>

 </Object>

 <Object ID?>*

</Signature>

Figure 6 – XML Signature Syntax Element Hierarchy

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 12

being signed. An additional <dsig:Reference> to a <dsig:SignatureProperties> element 343

as described in Section 6.2.3.2 SHOULD also be included. If the content being signed is dependent upon 344

additional references, see Section 6.2.3.1 for additional guidelines. 345

6.2.2 KeyInfo 346

The <dsig:KeyInfo> element MAY be used to provide information about how to obtain the key 347

needed for signature validation. In addition to the requirements in section 4.4 of [XMLDSIG], 348

applications MUST implement support for the <dsig:X509Data> element in section 4.4.4 of 349

[XMLDSIG]. 350

RFC 4050 [RFC4050] describes a possible <dsig:KeyValue> representation for an ECDSA key. The 351

representation and processing instructions described in [RFC4050] are not completely compatible with 352

[XMLDSIG-11]; therefore, ECDSA keys SHOULD NOT be provided through a <dsig:KeyValue> 353

element. 354

Note that unless a <dsig:Reference> to the <dsig:KeyInfo> is included, the 355

<dsig:KeyInfo> is not validated as part of the signature. 356

6.2.3 Object 357

The <dsig:Object> element holds data that can be referenced, usually for an enveloping signature. 358

The <dsig:SignatureProperties> and <dsig:Manifest> elements are both children of 359

<dsig:Object>. 360

6.2.3.1 Manifest 361

The <dsig:Manifest> element SHOULD be used when additional document references beyond the 362

main document reference are necessary. This is typically the case when a collection of documents is 363

needed to represent all of the necessary content or when a primary document has dependencies on content 364

in additional documents. When the <dsig:Manifest> element is used, there MUST be a 365

<dsig:Reference> within the <dsig:SignedInfo> element which references the 366

<dsig:Manifest>. See Section 6.2.4 for the requirements on how the reference is accomplished. The 367

content of the <dsig:Reference> elements MUST follow the requirements in Section 6.2.4. A 368

<dsig:Reference> element included as a child of a <dsig:Manifest> will not be validated 369

during signature validation. 370

6.2.3.2 SignatureProperty 371

A <dsig:SignatureProperties> element SHOULD be included on a signature as a child element 372

of <dsig:Object>. The <dsig:SignatureProperties> element MUST contain at least one 373

<dsig:SignatureProperty> element. The <dsig:SignatureProperty> element captures 374

metadata information about the signature. If the RECOMMENDED <dt:signature-info> 375

element is included, it MUST be included as the lone child of a <dsig:SignatureProperty> 376

element included within a <dsig:SignatureProperties> element. This parent 377

<dsig:SignatureProperty> element MUST include the @Target attribute populated with ―#‖ + 378

ID of the signature. Table 2 describes the <dt:signature-info> data model. 379

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 13

Table 2 – dt:signature-info 380

Element Name: dt:signature-info

Definition A root element capturing common metadata about an XML digital signature.

Properties Name Type Count Definition

dc:creator literal – string 0-n The person, organization, or tool that created the

signature.

dc:date literal – dateTime 0-1 The date and time when the signature was created.

nonce literal – token 0-1 A token value. Possible uses include ordering of
requests and preventing replay attacks.

 381

An example of a <dsig:SignatureProperties> is included below: 382

<dsig:Object> 383
 <dsig:SignatureProperties Id="signature-prop-global-id1"> 384
 <dsig:SignaturePropertyTarget="#digital-sig-gloabl-id1"> 385
 <dt:signature-info> 386
 <dc:creator>John Smith</dc:creator> 387
 <dc:creator>ACME Inc</dc:creator> 388
 <dc:date>2011-07-01T00:00:00Z</dc:date> 389
 <dsig:nonce>04EED3035045C9E7</dsig:nonce> 390
 </dt:signature-info> 391
 </dsig:SignatureProperty> 392
 </dsig:SignatureProperties> 393
</dsig:Object> 394

The XML Schema for the <dt:signature-info> element is at 395

http://scap.nist.gov/specifications/tmsad/#resource-1.0. 396

6.2.4 References 397

References are an essential part of an XML digital signature. This section contains requirements specific 398

to the construction of references. These requirements apply to a <dsig:Reference> that is a child of 399

either <dsig:SignedInfo> or <dsig:Manifest>. 400

If the document that contains the signature is referenced, it SHOULD be referenced by setting the @URI 401

attribute on <dsig:Reference> to the empty string (i.e., @URI=―‖). When referencing items in the 402

signature that have an attribute of type xs:ID such as <dsig:Object>, <dsig:Manifest>, or 403

<dsig:SignatureProperties>, they SHOULD be referenced using a URI fragment (e.g., 404

@URI=“#referenceIdentifier”). 405

When referencing a <dsig:Object>, <dsig:Manifest>, or 406

<dsig:SignatureProperties> from a <dsig:Reference>, the @Type attribute MUST be 407

specified, and it MUST contain http://www.w3.org/2000/09/xmldsig#Object, 408

http://www.w3.org/2000/09/xmldsig#Manifest, or 409

http://www.w3.org/2000/09/xmldsig#SignatureProperties, respectively. 410

When specifying XPath transforms, content authors SHOULD use only XPath Filter 2.0 [XPath Filter-2] , 411

which is consistent with XML Digital Signature best practices [XMLDSIG-BEST]. Due to the more 412

limited support of XPath 2.0, XPath transforms SHOULD use only XPath 1.0 [XPath] expressions. 413

http://scap.nist.gov/specifications/tmsad/#resource-1.0

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 14

When referencing the root node of an XML document, if an ID exists on the root node that is not of type 414

xs:ID, then the reference SHOULD specify an [XPath Filter-2] transform targeting the root node by ID. 415

For example, if the root node of a document is <root-node id=”root123”>, then the [XPath 416

Filter-2] expression would be ―root-node[@id = “root123”]‖ with a @Filter attribute value 417

of ―intersect‖. This approach is preferable because if the signed document is later included as a child 418

node within another XML document, the signature can still be valid (unless there is an ID conflict). 419

Unnamed XSLT transforms SHOULD be avoided. Specifications requiring XSLT transform capabilities 420

SHOULD create named XSLT transforms to avoid the issues with XSLT transforms identified in 421

[XMLDSIG-BEST]. 422

When specifying multiple transforms on a reference, the transforms SHOULD be specified in this order: 423

1. Enveloped Signature Transform (only when the signature is enveloped
1
) 424

2. XPath Filter 2 Transforms (if applicable) 425

3. Named or XSLT Transforms (if applicable) 426

4. XML Canonicalization (only if the last transform outputs XML) 427

This ordering resulted from issues with an implementation of the [XMLDSIG] specification, when the 428

enveloped signature transform was not the first transform. Additionally, because there is no guarantee that 429

a Named or XSLT transform will result in XML, those transforms SHOULD come after the XPath Filter 430

2 transforms. 431

6.3 Conventions 432

This section contains additional conventions that apply to the creation of the signature. 433

6.3.1 Canonicalization 434

No additional support for canonicalization algorithms is necessary beyond what is specified in 435

[XMLDSIG]. Content authors SHOULD use the Canonical XML 1.1 method [XML-C14N11]. 436

6.3.2 Countersigning 437

Countersigning is the creation of a signature for content that has already been signed while maintaining 438

the previous signature. Keeping the previous signature allows for provenance to be preserved over the 439

content. A countersigner is signing the existing signature and not the content itself; therefore, the existing 440

signature MUST validate successfully prior to countersigning. When countersigning an existing signature, 441

content authors MUST include the original signature as a child to a <dsig:Object> element of the 442

new signature and reference the <dsig:Object> within the new signature. The original signature 443

MUST then be removed from the document and replaced with the new countersigning signature. 444

6.3.3 Id Values 445

<dsig:Signature>, <dsig:SignatureProperties>, <dsig:Manifest>, and 446

<dsig:Object> each have an @Id attribute. The @Id attribute for these elements SHOULD be 447

globally unique to permit document composition. 448

1 http://www.w3.org/TR/xmldsig-core/#def-SignatureEnveloped

http://www.w3.org/TR/xmldsig-core/#def-SignatureEnveloped

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 15

7. Processing Requirements 449

All implementations MUST implement the processing requirements specified in [XMLDSIG]. This 450

section describes additional general processing requirements that implementations of the trust model 451

MUST follow to correctly process the trust model. 452

7.1 Signature Identifiers 453

If an algorithm identifier has been specified in [RFC4051] and the identifier specified within [RFC4051] 454

was used, implementations SHOULD follow any processing guidance associated with the identifier as 455

specified within [RFC4051]. If, during validation of a signature, a content consumer encounters an 456

algorithm or algorithm parameter that the content consumer does not support, an error MUST be issued. 457

Algorithm parameters also include any implicit parameters such as the length in bits of the key. 458

7.2 Signature Verification 459

While not a requirement, when performing signature verification, implementations are encouraged to 460

follow the relevant best practices in XML Signature Best Practices [XMLDSIG-BEST]. 461

7.3 Manifest References 462

Although the content within a <dsig:Manifest> element is validated, the content for a 463

<dsig:Reference> element that is a child of a <dsig:Manifest> element is not validated during 464

signature validation. All content consumers that validate a signature MUST also validate a reference 465

according to the reference validation requirements identified in section 3.2.1of [XMLDSIG]. 466

7.4 KeyInfo 467

When processing a signature, if the <dsig:KeyInfo> element has not been provided, then a content 468

consumer MUST either issue an error or provide a method for associating the content with a key that can 469

be used to validate the signature. 470

7.5 Countersigning 471

When a signature (i.e., countersigning signature) countersigns another signature (i.e., countersigned 472

signature) by including the countersigned signature as a child element to a <dsig:Object>, and the 473

countersigned signature specifies the ―Enveloped Signature Transform‖
2
 on one of its references, then 474

special processing rules apply. Specifically, after validating the countersigning signature, the 475

countersigning signature MUST be replaced in the XML content by the countersigned signature. If the 476

―Enveloped Signature Transform‖ is not specified on any of the countersigned signature’s references, 477

then the replace step MAY be skipped. Lastly, the countersigned signature MUST be validated. An error 478

MUST be issued if a chain of signature references results in a cycle. 479

2 http://www.w3.org/TR/xmldsig-core/#sec-EnvelopedSignature

http://www.w3.org/TR/xmldsig-core/#sec-EnvelopedSignature

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 16

Appendix A—Example Usage 480

Example demonstrations of the information in this document can be found at 481

http://scap.nist.gov/specifications/tmsad/#resource-1.0. Examples are: 482

 signing/hashing of a single document 483

 signing with a manifest 484

 countersigning (signing an already signed document)485

http://scap.nist.gov/specifications/tmsad/#resource-1.0

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 17

Appendix B—References 486

B.1 Normative References 487

[FIPS180-3] United States. National Institute of Standards and Technology. Federal Information 488

Processing Standards Publication 180-3, Secure Hash Standard (SHS). October 2008. See 489

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf. 490

[FIPS186-3] United States. National Institute of Standards and Technology. Federal Information 491

Processing Standards Publication 186-3, Digital Signature Standard (DSS). June 2009. See 492

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf. 493

[PKCS1] Jonsson, J. and B. Kaliski (2003). Public-Key Cryptography Standards (PKCS) #1: RSA 494

Cryptography Specifications Version 2.1. February 2003. See http://www.ietf.org/rfc/rfc3447.txt. 495

[RFC2045] Freed, N. and N. Borenstein, (1996). Multipurpose Internet Mail Extensions (MIME) Part 496

One: Format of Internet Message Bodies. November 1996. See http://www.ietf.org/rfc/rfc2045.txt. 497

[RFC2119] Bradner, S. (1997). Key words for use in RFCs to Indicate Requirement Levels. March 1997. 498

See http://www.ietf.org/rfc/rfc2119.txt. 499

[RFC4051] Eastlake, D. (2005). Additional XML Security Uniform Resource Identifiers (URIs). April 500

2005. See http://www.ietf.org/rfc/rfc4051.txt. 501

[XML-C14N] Boyer, John (2001). Canonical XML Version 1.0, W3C Recommendation, March 2001. 502

See http://www.w3.org/TR/2001/REC-xml-c14n-20010315 or http://www.ietf.org/rfc/rfc3076.txt. 503

[XML-C14N11] Boyer, John and Glenn Marcy (2008). Canonical XML Version 1.1, W3C 504

Recommendation, May 2008. See http://www.w3.org/TR/2008/REC-xml-c14n11-20080502. 505

[XMLDSIG] Eastlake, Donald, et al. (2008). XML Signature Syntax and Processing, 2
nd

 Edition, W3C 506

Recommendation, June 2008. See http://www.w3.org/TR/xmldsig-core/. 507

 [XML-exc-C14N] Boyer, John, Donald Eastlake, and Joseph Reagle (2002). Exclusive XML 508

Canonicalization Version 1.0, W3C Recommendation, July 2002. See http://www.w3.org/TR/2002/REC-509

xml-exc-c14n-20020718/. 510

[XPath] Clark, James and Steve DeRose (1999). XML Path Language (XPath) Version 1.0, W3C 511

Recommendation. October 1999. See http://www.w3.org/TR/1999/REC-xpath-19991116. 512

[XPath Filter-2] Boyer, John, Merlin Hughes, and Joseph Reagle (2002). XML-Signature XPath Filter 513

2.0, W3C Recommendation, November 2002. See http://www.w3.org/TR/2002/REC-xmldsig-filter2-514

20021108/. 515

B.2 Informative References 516

[FIPS140-2] United States. National Institute of Standards and Technology. Federal Information 517

Processing Standards Publication 140-2, Security Requirements for Cryptographic Modules. 25 May 518

2001. See http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf. 519

[RFC4050] Blake-Wilson, S., et al. (2005). Using the Elliptic Curve Signature Algorithm (ECDSA) for 520

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc4051.txt
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.ietf.org/rfc/rfc3076.txt
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/
http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 18

XML Digital Signatures. April 2005. See http://www.ietf.org/rfc/rfc4050.txt. 521

[SP800-57] United States. National Institute of Standards and Technology. Special Publication 800-57, 522

Recommendation for Key Management – Part 1: General. March 2007. See 523

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf. 524

[SP800-102] United States. National Institute of Standards and Technology. Special Publication 800-102, 525

Recommendation for Digital Signature Timeliness. September 2009. See 526

http://csrc.nist.gov/publications/nistpubs/800-102/sp800-102.pdf. 527

[XML] Bray, Tim, et al. (2008). Extensible Markup Language (XML) 1.0, 5
th
 Edition, W3C 528

Recommendation, November 2008. See http://www.w3.org/TR/2008/REC-xml-20081126/. 529

[XMLDSIG-11] Eastlake, Donald, et al. (2011). XML Signature Syntax and Processing Version 1.1, W3C 530

Candidate Recommendation, March 2011. See http://www.w3.org/TR/2011/CR-xmldsig-core1-531

20110303/. 532

 [XMLDSIG-BEST] Hirsch, Frederick, and Datta, Pratik. (2010). XML Signature Best Practices, August 533

2010. See http://www.w3.org/TR/xmldsig-bestpractices/. 534

[XMLENC] Eastlake, Donald and Joseph Reagle. (2002). XML Encryption Syntax and Processing, W3C 535

Recommendation, December 2002. See http://www.w3.org/TR/xmlenc-core/. 536

http://www.ietf.org/rfc/rfc4050.txt
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-102/sp800-102.pdf
http://www.w3.org/TR/2011/CR-xmldsig-core1-20110303/
http://www.w3.org/TR/2011/CR-xmldsig-core1-20110303/
http://www.w3.org/TR/xmldsig-bestpractices/
http://www.w3.org/TR/xmlenc-core/

TRUST MODEL FOR SECURITY AUTOMATION DATA 1.0 (TMSAD) (DRAFT)

 19

Appendix C—Change Log 537

Release 0 – July 2011 538

 Initial public release 539

	1. Introduction
	1.1 Purpose and Scope
	1.2 Document Structure
	1.3 Document Conventions

	2. Abbreviations
	3. Relationship to Existing Specifications and Standards
	4. Conformance
	4.1 Product Conformance
	4.2 Content Conformance

	5. Algorithms and Parameters
	5.1 RSA-SHA256
	5.2 ECDSA-SHA256
	5.3 Digest Algorithms
	5.3.1 SHA-256
	5.3.2 SHA-384
	5.3.3 SHA-512

	6. Model Overview
	6.1 Signature Types
	6.1.1 Detached
	6.1.2 Enveloped
	6.1.3 Enveloping

	6.2 XML Signature Syntax Overview
	6.2.1 SignedInfo
	6.2.2 KeyInfo
	6.2.3 Object
	6.2.3.1 Manifest
	6.2.3.2 SignatureProperty

	6.2.4 References

	6.3 Conventions
	6.3.1 Canonicalization
	6.3.2 Countersigning
	6.3.3 Id Values

	7. Processing Requirements
	7.1 Signature Identifiers
	7.2 Signature Verification
	7.3 Manifest References
	7.4 KeyInfo
	7.5 Countersigning
	Appendix A— Example Usage
	Appendix B— References
	B.1 Normative References
	B.2 Informative References

	Appendix C— Change Log

